Anticonvulsants (also commonly known as antiepileptic drugs or as antiseizure drugs) are a diverse group of pharmacological agents used in the treatment of epileptic seizures. Anticonvulsants are also increasingly being used in the treatment of bipolar disorder[1] and borderline personality disorder,[2] since many seem to act as mood stabilizers, and for the treatment of neuropathic pain.[3] Anticonvulsants suppress the rapid and excessive firing of neurons during seizures.[4] Anticonvulsants also prevent the spread of the seizure within the brain.[5] Some investigators have observed that anticonvulsants themselves may cause reduced IQ in children.[6] However these adverse effects must be balanced against the significant risk epileptic seizures pose to children and the distinct possibility of death and devastating neurological sequelae secondary to seizures. Anticonvulsants are more accurately called antiepileptic drugs (abbreviated "AEDs"), and are often referred to as antiseizure drugs because they provide symptomatic treatment only and have not been demonstrated to alter the course of epilepsy.

Conventional antiepileptic drugs may block sodium channels or enhance γ-aminobutyric acid (GABA) function. Several antiepileptic drugs have multiple or uncertain mechanisms of action.[7] Next to the voltage-gated sodium channels and components of the GABA system, their targets include GABAA receptors, the GAT-1 GABA transporter, and GABA transaminase.[8] Additional targets include voltage-gated calcium channels, SV2A, and α2δ.[9][10] By blocking sodium or calcium channels, antiepileptic drugs reduce the release of excitatory glutamate, whose release is considered to be elevated in epilepsy, but also that of GABA.[11] This is probably a side effect or even the actual mechanism of action for some antiepileptic drugs, since GABA can itself, directly or indirectly, act proconvulsively.[11] Another potential target of antiepileptic drugs is the peroxisome proliferator-activated receptor alpha.[12][13][14][15][16][17][18] The drug class was the 5th-best-selling in the US in 2007.[19]

Some anticonvulsants have shown antiepileptogenic effects in animal models of epilepsy.[20] That is, they either prevent the development of epilepsy or can halt or reverse the progression of epilepsy. However, no drug has been shown in human trials to prevent epileptogenesis (the development of epilepsy in an individual at risk, such as after a head injury).[21]


  • Approval 1
  • Drugs 2
    • Aldehydes 2.1
    • Aromatic allylic alcohols 2.2
    • Barbiturates 2.3
    • Benzodiazepines 2.4
    • Bromides 2.5
    • Carbamates 2.6
    • Carboxamides 2.7
    • Fatty acids 2.8
    • Fructose derivatives 2.9
    • GABA analogs 2.10
    • Hydantoins 2.11
    • Oxazolidinediones 2.12
    • Propionates 2.13
    • Pyrimidinediones 2.14
    • Pyrrolidines 2.15
    • Succinimides 2.16
    • Sulfonamides 2.17
    • Triazines 2.18
    • Ureas 2.19
    • Valproylamides (amide derivatives of valproate) 2.20
    • Other 2.21
  • Non-medical anticonvulsants 3
  • Treatment guidelines 4
  • History 5
    • Marketing approval history 5.1
  • Use in pregnancy 6
  • See also 7
  • References 8
  • Further reading 9
  • External links 10


The usual method of achieving approval for a drug is to show it is effective when compared against placebo, or that it is more effective than an existing drug. In monotherapy (where only one drug is taken) it is considered unethical by most to conduct a trial with placebo on a new drug of uncertain efficacy. This is because untreated epilepsy leaves the patient at significant risk of death. Therefore, almost all new epilepsy drugs are initially approved only as adjunctive (add-on) therapies. Patients whose epilepsy is currently uncontrolled by their medication (i.e., it is refractory to treatment) are selected to see if supplementing the medication with the new drug leads to an improvement in seizure control. Any reduction in the frequency of seizures is compared against a placebo.[21] The lack of superiority over existing treatment, combined with lacking placebo-controlled trials, means that few modern drugs have earned FDA approval as initial monotherapy. In contrast, Europe only requires equivalence to existing treatments, and has approved many more. Despite their lack of FDA approval, the American Academy of Neurology and the American Epilepsy Society still recommend a number of these new drugs as initial monotherapy.[21]


In the following list, the dates in parentheses are the earliest approved use of the drug.


  • Paraldehyde (1882). One of the earliest anticonvulsants. It is still used to treat status epilepticus, particularly where there are no resuscitation facilities.

Aromatic allylic alcohols


Barbiturates are drugs that act as central nervous system (CNS) depressants, and by virtue of this they produce a wide spectrum of effects, from mild sedation to anesthesia. The following are classified as anticonvulsants:

Phenobarbital was the main anticonvulsant from 1912 until the development of phenytoin in 1938. Today, phenobarbital is rarely used to treat epilepsy in new patients since there are other effective drugs that are less sedating. Phenobarbital sodium injection can be used to stop acute convulsions or status epilepticus, but a benzodiazepine such as lorazepam, diazepam or midazolam is usually tried first. Other barbiturates only have an anticonvulsant effect at anaesthetic doses.


The benzodiazepines are a class of drugs with hypnotic, anxiolytic, anticonvulsive, amnestic and muscle relaxant properties. Benzodiazepines act as a central nervous system depressant. The relative strength of each of these properties in any given benzodiazepine varies greatly and influences the indications for which it is prescribed. Long-term use can be problematic due to the development of tolerance to the anticonvulsant effects and dependency.[24][25][26][27] Of the many drugs in this class, only a few are used to treat epilepsy:

The following benzodiazepines are used to treat status epilepticus:

  • Diazepam (1963). Can be given rectally by trained care-givers.
  • Midazolam (N/A). Increasingly being used as an alternative to diazepam. This water-soluble drug is squirted into the side of the mouth but not swallowed. It is rapidly absorbed by the buccal mucosa.
  • Lorazepam (1972). Given by injection in hospital.

Nitrazepam, temazepam, and especially nimetazepam are powerful anticonvulsant agents, however their use is rare due to an increased incidence of side effects and strong sedative and motor-impairing properties.


  • Potassium bromide (1857). The earliest effective treatment for epilepsy. There would not be a better drug until phenobarbital in 1912. It is still used as an anticonvulsant for dogs and cats.


  • Felbamate (1993). This effective anticonvulsant has had its usage severely restricted due to rare but life-threatening side effects.[28][29][30]



The following are carboxamides:

  • Carbamazepine (1963). A popular anticonvulsant that is available in generic formulations.
  • Oxcarbazepine (1990). A derivative of carbamazepine that has similar efficacy but is better tolerated and is also available generically.
  • Eslicarbazepine acetate (2009)

Fatty acids

The following are fatty-acids:

Vigabatrin and progabide are also analogs of GABA.

Fructose derivatives

GABA analogs


The following are hydantoins:


The following are oxazolidinediones:





The following are succinimides:




Valproylamides (amide derivatives of valproate)


Non-medical anticonvulsants

Sometimes, ketogenic diet or vagus nerve stimulation are described as "anticonvulsant" therapies as well.

Treatment guidelines

According to guidelines by the AAN and AES,[31] mainly based on a major article review in 2004,[32] patients with newly diagnosed epilepsy who require treatment can be initiated on standard anticonvulsants such as carbamazepine, phenytoin, valproic acid/valproate semisodium, phenobarbital, or on the newer anticonvulsants gabapentin, lamotrigine, oxcarbazepine or topiramate. The choice of anticonvulsants depends on individual patient characteristics.[31] Both newer and older drugs are generally equally effective in new onset epilepsy.[31] The newer drugs tend to have fewer side effects.[31] For newly diagnosed partial or mixed seizures, there is evidence for using gabapentin, lamotrigine, oxcarbazepine or topiramate as monotherapy.[31] Lamotrigine can be included in the options for children with newly diagnosed absence seizures.[31]


The first anticonvulsant was bromide, suggested in 1857 by Charles Locock who used it to treat women with "hysterical epilepsy" (probably catamenial epilepsy). Bromides are effective against epilepsy, and also cause impotence, which is not related to its anti-epileptic effects. Bromide also suffered from the way it affected behaviour, introducing the idea of the 'epileptic personality' which was actually a result of medication. Phenobarbital was first used in 1912 for both its sedative and antiepileptic properties. By the 1930s, the development of animal models in epilepsy research led to the development of phenytoin by Tracy Putnam and H. Houston Merritt, which had the distinct advantage of treating epileptic seizures with less sedation.[33] By the 1970s, a National Institutes of Health initiative, the Anticonvulsant Screening Program, headed by J. Kiffin Penry, served as a mechanism for drawing the interest and abilities of pharmaceutical companies in the development of new anticonvulsant medications.

Marketing approval history

The following table lists anticonvulsant drugs together with the date their marketing was approved in the US, UK and France. Data for the UK and France are incomplete. In recent years, the European Medicines Agency has approved drugs throughout the European Union. Some of the drugs are no longer marketed.

Drug Brand US UK France
acetazolamide Diamox 1953-07-2727 July 1953[34] 1988[35]
carbamazepine Tegretol 1974-07-1515 July 1974[36][37] 1965[35] 1963[38]
clobazam Frisium 1979[35]
clonazepam Klonopin/Rivotril 1975-06-044 June 1975[39] 1974[35]
diazepam Valium 1963-11-1515 November 1963[40]
divalproex sodium Depakote 1983-03-1010 March 1983[41]
eslicarbazepine Data needed
ethosuximide Zarontin 1960-11-022 November 1960[42] 1955[35] 1962[38]
ethotoin Peganone 1957-04-2222 April 1957[43]
felbamate Felbatol 1993-07-2929 July 1993[44]
fosphenytoin Cerebyx 1996-08-055 August 1996[45]
gabapentin Neurontin 1993-12-3030 December 1993[46] 1993-05May 1993[35][38] 1994-10October 1994[38]
lamotrigine Lamictal 1994-12-2727 December 1994[47] 1991-10October 1991[35][38] 1995-05May 1995[38]
lacosamide Vimpat 2008-10-2828 October 2008[48]
levetiracetam Keppra 1999-11-3030 November 1999[49] 2000-09-2929 September 2000[35][50] 2000-09-2929 September 2000[50]
mephenytoin Mesantoin 1946-10-2323 October 1946[51]
metharbital Gemonil 1952[52][53]
methsuximide Celontin 1957-02-088 February 1957[54]
methazolamide Neptazane 1959-01-2626 January 1959[55]
oxcarbazepine Trileptal 2000-01-1414 January 2000[56] 2000[35]
phenobarbital 1912[35] 1920[38]
phenytoin Dilantin/Epanutin 1938[38][57] 1938[35] 1941[38]
phensuximide Milontin 1953[58][59]
pregabalin Lyrica 2004-12-3030 December 2004[60] 2004-07-066 July 2004[35][61] 2004-07-066 July 2004[61]
primidone Mysoline 1954-03-088 March 1954[62] 1952[35] 1953[38]
sodium valproate Epilim 1977-12December 1977[38] 1967-06June 1967[38]
stiripentol Diacomit 2001-12-055 December 2001[63] 2001-12-055 December 2001[63]
tiagabine Gabitril 1997-09-3030 September 1997[64][65] 1998[35] 1997-11November 1997[38]
topiramate Topamax 1996-12-2424 December 1996[66] 1995[35]
trimethadione Tridione 1946-01-2525 January 1946[67]
valproic acid Depakene/Convulex 1978-02-2828 February 1978[68] 1993[35]
vigabatrin Sabril 2009-08-2121 August 2009[69] 1989[35]
zonisamide Zonegran 2000-03-2727 March 2000[70] 2005-03-1010 March 2005[35][71] 2005-03-1010 March 2005[71]

Use in pregnancy

During pregnancy, the metabolism of several anticonvulsants is affected. There may be an increase in the clearance and resultant decrease in the blood concentration of lamotrigine, phenytoin, and to a lesser extent carbamazepine, and possibly decreases the level of levetiracetam and the active oxcarbazepine metabolite, the monohydroxy derivative.[72] Therefore, these drugs should be monitored during use in pregnancy.[72]

Valproic acid, and its derivatives such as sodium valproate and divalproex sodium, causes cognitive deficit in the child, with an increased dose causing decreased intelligence quotient.[73] On the other hand, evidence is conflicting for carbamazepine regarding any increased risk of congenital physical anomalies or neurodevelopmental disorders by intrauterine exposure.[73] Similarly, children exposed lamotrigine or phenytoin in the womb do not seem to differ in their skills compared to those who were exposed to carbamazepine.[73]

There is inadequate evidence to determine if newborns of women with epilepsy taking anticonvulsants have a substantially increased risk of hemorrhagic disease of the newborn.[72]

Regarding breastfeeding, some anticonvulsants probably pass into breast milk in clinically significant amounts, including primidone and levetiracetam.[72] On the other hand, valproate, phenobarbital, phenytoin, and carbamazepine probably are not transferred into breast milk in clinically important amounts.[72]

In animal models, several anticonvulsant drugs have been demonstrated to induce neuronal apoptosis in the developing brain.[74][75][76][77][78]

See also


  1. ^ Keck, Jr., Paul E.; McElroy, Susan L.; Strakowski, Stephen M. (1998). "Anticonvulsants and antipsychotics in the treatment of bipolar disorder.". The Journal of Clinical Psychiatry 59 (Suppl 6): 74–82.  
  2. ^ American Psychiatric Association, and American Psychiatric Association. Work Group on Borderline Personality Disorder. Practice guideline for the treatment of patients with borderline personality disorder. American Psychiatric Pub, 2001.
  3. ^ Rogawski, Michael A.; Löscher, Wolfgang (2004). "The neurobiology of antiepileptic drugs". Nature Reviews Neuroscience 5 (7): 553–564.  
  4. ^ McLean, M J; Macdonald, R L (June 1986). "Sodium valproate, but not ethosuximide, produces use- and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture.". Journal of Pharmacology and Experimental Therapeutics 237 (3): 1001–1011. 
  5. ^ Harden, C. L. (1 May 1994). "New antiepileptic drugs". Neurology 44 (5): 787–787.  
  6. ^ Loring, David W (1 September 2005). "Cognitive Side Effects of Antiepileptic Drugs in Children". Psychiatric Times XXII (10). 
  7. ^
  8. ^ Rogawski MA, Löscher W; Löscher (July 2004). "The neurobiology of antiepileptic drugs". Nature Reviews Neuroscience 5 (7): 553–64.  
  9. ^ Rogawski MA, Bazil CW; Bazil (July 2008). "New molecular targets for antiepileptic drugs: alpha(2)delta, SV2A, and K(v)7/KCNQ/M potassium channels". Curr Neurol Neurosci Rep 8 (4): 345–52.  
  10. ^ Meldrum BS, Rogawski MA; Rogawski (January 2007). "Molecular targets for antiepileptic drug development". Neurotherapeutics 4 (1): 18–61.  
  11. ^ a b Kammerer, M.; Rassner, M. P.; Freiman, T. M.; Feuerstein, T. J. (2 May 2011). "Effects of antiepileptic drugs on GABA release from rat and human neocortical synaptosomes". Naunyn-Schmiedeberg's Archives of Pharmacology 384 (1): 47–57.  
  12. ^ Puligheddu M, Pillolla G, Melis M, Lecca S, Marrosu F, De Montis MG; et al. (2013). Charpier, Stéphane, ed. "PPAR-alpha agonists as novel antiepileptic drugs: preclinical findings". PLoS ONE 8 (5): e64541.  
  13. ^ Citraro R, Russo E, Scicchitano F, van Rijn CM, Cosco D, Avagliano C; et al. (2013). "Antiepileptic action of N-palmitoylethanolamine through CB1 and PPAR-α receptor activation in a genetic model of absence epilepsy". Neuropharmacology 69: 115–26.  
  14. ^ Porta, N., Vallée, L., Lecointe, C., Bouchaert, E., Staels, B., Bordet, R., Auvin, S. (2009). "Fenofibrate, a peroxisome proliferator-activated receptor-alpha agonist, exerts anticonvulsive properties.". Epilepsia 50 (4): 943–8.  
  15. ^ Lampen A, Carlberg C, Nau H; Carlberg; Nau (2001). "Peroxisome proliferator-activated receptor delta is a specific sensor for teratogenic valproic acid derivatives". Eur J Pharmacol 431 (1): 25–33.  
  16. ^ Maguire JH, Murthy AR, Hall IH; Murthy; Hall (1985). "Hypolipidemic activity of antiepileptic 5-phenylhydantoins in mice". Eur J Pharmacol 117 (1): 135–8.  
  17. ^ Hall IH, Patrick MA, Maguire JH; Patrick; Maguire (1990). "Hypolipidemic activity in rodents of phenobarbital and related derivatives". Arch Pharm (Weinheim) 323 (9): 579–86.  
  18. ^ Frigerio F, Chaffard G, Berwaer M, Maechler P; Chaffard; Berwaer; Maechler (2006). "The antiepileptic drug topiramate preserves metabolism-secretion coupling in insulin secreting cells chronically exposed to the fatty acid oleate". Biochem Pharmacol 72 (8): 965–73.  
  19. ^ "According to the Washington Post who quoted research from IMS Health, AEDs were the fifth best selling class of drugs in the US in 2007, with sales topping 10 billion dollars. "
  20. ^ Kaminski, R. M.; Rogawski, M. A.; Klitgaard, H (2014). "The potential of antiseizure drugs and agents that act on novel molecular targets as antiepileptogenic treatments". Neurotherapeutics 11 (2): 385–400.  
  21. ^ a b c Abou-Khalil BW (2007). "Comparative Monotherapy Trials and the Clinical Treatment of Epilepsy". Epilepsy currents / American Epilepsy Society 7 (5): 127–9.  
  22. ^ Plosker, GL (November 2012). "Stiripentol : in severe myoclonic epilepsy of infancy (dravet syndrome)". CNS Drugs 26 (11): 993–1001.  
  23. ^ "Public summary of positive opinion for orpphan opinion for orphan designation of stiripentol for the treatment of severe myoclonic epilepsy in infancy" (PDF). European Medicines Agency. 30 July 2007. Retrieved 19 May 2013. Doc.Ref.: EMEA/COMP/269/04 
  24. ^ Browne TR (May 1976). "Clonazepam. A review of a new anticonvulsant drug". Arch Neurol 33 (5): 326–32.  
  25. ^ Isojärvi, JI; Tokola RA (December 1998). "Benzodiazepines in the treatment of epilepsy in people with intellectual disability". J Intellect Disabil Res 42 (1): 80–92.  
  26. ^ Tomson, T; Svanborg, E; Wedlund, JE (May–Jun 1986). "Nonconvulsive status epilepticus". Epilepsia 27 (3): 276–85.  
  27. ^ Djurić, M; Marjanović B; Zamurović D (May–Jun 2001). "[West syndrome--new therapeutic approach]". Srp Arh Celok Lek 129 (1): 72–7.  
  28. ^ Sankar, editors John M. Pellock, Blaise F.D. Bourgeois, W. Edwin Dodson ; associate editors, Douglas R. Nordli, Jr., Raman (2008). Pediatric epilepsy : diagnosis and therapy (3rd ed., updated and new. ed.). New York: Demos Medical Pub.  
  29. ^ French, J; Smith, M; Faught, E; Brown, L (12 May 1999). "Practice advisory: The use of felbamate in the treatment of patients with intractable epilepsy: report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Epilepsy Society". Neurology 52 (8): 1540–5.  
  30. ^ "Felbamate". MedlinePlus : U.S. National Library of Medicine. Retrieved 19 May 2013. 
  32. ^ French JA, Kanner AM, Bautista J; et al. (May 2004). "Efficacy and tolerability of the new antiepileptic drugs, I: Treatment of new-onset epilepsy: report of the TTA and QSS Subcommittees of the American Academy of Neurology and the American Epilepsy Society". Epilepsia 45 (5): 401–9.  
  33. ^ Eadie MJ, Bladin PF (2001). "A Disease Once Sacred: a History of the Medical Understanding of Epilepsy". 
  34. ^ NDA 008943
  35. ^ a b c d e f g h i j k l m n o p q r Epilepsy Action: Druglist. Retrieved on 1 November 2007.
  36. ^ NDA 016608 (Initial approval on 11 March 1968 was for trigeminal neuralgia.)
  37. ^ Schain, Richard J. (1 March 1978). "Pediatrics—Epitomes of Progress: Carbamazepine (Tegretol®) in the Treatment of Epilepsy". Western Journal of Medicine 128 (3): 231–232.  
  38. ^ a b c d e f g h i j k l m Loiseau, Pierre Jean-Marie (June 1999). "Clinical Experience with New Antiepileptic Drugs: Antiepileptic Drugs in Europe" ( 
  39. ^ NDA 017533
  40. ^ NDA 013263
  41. ^ NDA 018723
  42. ^ NDA 012380
  43. ^ NDA 010841
  44. ^ NDA 020189
  45. ^ NDA 020450
  46. ^ NDA 020235
  47. ^ NDA 020241
  48. ^ NDA 022253
  49. ^ NDA 021035
  50. ^ a b EPAR: Keppra. Retrieved on 1 November 2007.
  51. ^ NDA 006008
  52. ^ NDA 008322
  53. ^ Dodson, W. Edwin; Giuliano Avanzini; Shorvon, Simon D.; Fish, David R.; Emilio Perucca (2004). The treatment of epilepsy. Oxford: Blackwell Science. xxviii.  
  54. ^ NDA 010596
  55. ^ NDA 011721
  56. ^ NDA 021014
  57. ^ NDA 008762 (Marketed in 1938, approved 1953)
  58. ^ NDA 008855
  59. ^ Kutt, Henn; Resor, Stanley R. (1992). The Medical treatment of epilepsy. New York: Dekker. p. 385.   (first usage)
  60. ^ NDA 021446
  61. ^ a b EPAR: Lyrica Retrieved on 1 November 2007.
  62. ^ NDA 009170
  63. ^ a b EPAR: Diacomit. Orphan designation: 5 December 2001, full authorisation: 4 January 2007 Retrieved on 1 November 2007.
  64. ^ NDA 020646
  65. ^ "NDA: 020646". DrugPatentWatch. Retrieved 19 May 2013. 
  66. ^ NDA 020505
  67. ^ NDA 005856
  68. ^ NDA 018081
  69. ^ Lundbeck Press Release
  70. ^ NDA 020789
  71. ^ a b EPAR: Zonegran. Retrieved on 1 November 2007
  72. ^ a b c d e Harden CL, Pennell PB, Koppel BS; et al. (May 2009). "Management issues for women with epilepsy--focus on pregnancy (an evidence-based review): III.  
  73. ^ a b c Bromley, Rebecca; Weston, Jennifer; Adab, Naghme; Greenhalgh, Janette; Sanniti, Anna; McKay, Andrew J; Tudur Smith, Catrin; Marson, Anthony G (2014). "Treatment for epilepsy in pregnancy: neurodevelopmental outcomes in the child".  
  74. ^ Bittigau P, Sifringer M, Genz K; et al. (May 2002). "Antiepileptic drugs and apoptotic neurodegenereation in the developing brain". Proceedings of the National Academy of Sciences of the United States of America 99 (23): 15089–94.  
  75. ^ Manthey D, Asimiadou S; et al. (Jun 2005). "Sulthiame but not levetiracetam exerts neurotoxic effect in the developing rat brain". Exp Neurol 193 (2): 497–503.  
  76. ^ Katz I, Kim J; et al. (Aug 2007). "Effects of lamotrigine alone and in combination with MK-801, phenobarbital, or phenytoin on cell death in the neonatal rat brain". J Pharmacol Exp Ther 322 (2): 494–500.  
  77. ^ Kim J, Kondratyev A, and Gale K (Oct 2007). "Antiepileptic drug-induced neuronal cell death in the immature brain: effects of carbamazepine, topiramate, and levetiracetam as monotherapy versus polytherapy". J Pharmacol Exp Ther 323 (1): 165–73.  
  78. ^ Forcelli PA, Kim J; et al. (Dec 2011). "Pattern of antiepileptic drug-induced cell death in limbic regions of the neonatal rat brain". Epilepsia 52 (12): e207–11.  

Further reading

  • Anti epileptic activity of novel substituted fluorothiazole derivatives by Devid Chutia, RGUHS

External links

  • eMedicine: Antiepileptic Drugs: an overview
  • NINDS: Anticonvulsant Screening Program
  • Use of Anticonvulsants in Pharmacotherapy of Bronchial Asthma
  • MDNG: Anticonvulsants and Bone Health
  • Miami Children's Brain Institute - Anticonvulsants
  • Drug Reference for FDA Approved Epilepsy Drugs
  • Epilepsy Action: UK Anti-Epileptic Drugs List