Biplot
Biplots are a type of exploratory graph used in statistics, a generalization of the simple twovariable scatterplot. A biplot allows information on both samples and variables of a data matrix to be displayed graphically. Samples are displayed as points while variables are displayed either as vectors, linear axes or nonlinear trajectories. In the case of categorical variables, category level points may be used to represent the levels of a categorical variable. A generalised biplot displays information on both continuous and categorical variables.
Contents
 Introduction and history 1
 Construction 2
 References 3
 Sources 4
Introduction and history
The biplot was introduced by K. Ruben Gabriel (1971). Gower and Hand (1996) wrote a monograph on biplots. Yan and Kang (2003) described various methods which can be used in order to visualize and interpret a biplot. The book by Greenacre (2010) is a practical useroriented guide to biplots, along with scripts in the opensource R programming language, to generate biplots associated with principal component analysis (PCA), multidimensional scaling (MDS), logratio analysis (LRA)—also known as spectral mapping^{[1]}^{[2]}—discriminant analysis (DA) and various forms of correspondence analysis: simple correspondence analysis (CA), multiple correspondence analysis (MCA) and canonical correspondence analysis (CCA). The book by Gower, Lubbe and le Roux (2011) aims to popularize biplots as a useful and reliable method for the visualization of multivariate data when researchers want to consider, for example, principal component analysis (PCA), canonical variates analysis (CVA) or various types of correspondence analysis.
Construction
A biplot is constructed by using the singular value decomposition (SVD) to obtain a lowrank approximation to a transformed version of the data matrix X, whose n rows are the samples (also called the cases, or objects), and whose p columns are the variables. The transformed data matrix Y is obtained from the original matrix X by centering and optionally standardizing the columns (the variables). Using the SVD, we can write Y = ∑_{k=1,...p}d_{k}u_{k}v_{k}^{T};, where the u_{k} are ndimensional column vectors, the v_{k} are pdimensional column vectors, and the d_{k} are a nonincreasing sequence of nonnegative scalars. The biplot is formed from two scatterplots that share a common set of axes and have a betweenset scalar product interpretation. The first scatterplot is formed from the points (d_{1}^{α}u_{1i}, d_{2}^{α}u_{2i}), for i = 1,...,n. The second plot is formed from the points (d_{1}^{1α}v_{1j}, d_{2}^{1α}v_{2j}), for j = 1,...,p. This is the biplot formed by the dominant two terms of the SVD, which can then be represented in a twodimensional display. Typical choices of α are 1 (to give a distance interpretation to the row display) and 0 (to give a distance interpretation to the column display), and in some rare cases α=1/2 to obtain a symmetrically scaled biplot (which gives no distance interpretation to the rows or the columns, but only the scalar product interpretation). The set of points depicting the variables can be drawn as arrows from the origin to reinforce the idea that they represent biplot axes onto which the samples can be projected to approximate the original data.
References
 ^ Lewi, Paul J. (2005). "Spectral mapping, a personal and historical account of an adventure in multivariate data analysis". Chemometrics and Intelligent Laboratory Systems 77 (12): 215–223.
 ^ David Livingstone (2009). A Practical Guide to Scientific Data Analysis. Chichester, John Wiley & Sons Ltd, 233238. ISBN 9780470851531
 Greenacre, M. (2010). Biplots in Practice. BBVA Foundation, Madrid, Spain. Available for free download ISBN 9788492384686, with materials.
Sources
 Gower, J.C., Lubbe, S. and le Roux, N. (2010). Understanding Biplots. Wiley. ISBN 9780470012550
 Gower, J.C. and Hand, D.J (1996). Biplots. Chapman & Hall, London, UK. ISBN 0412716305
 Yan, W. and Kang, M.S. (2003). GGE Biplot Analysis. CRC Press, Boca Raton, FL. ISBN 0849313384
 Demey, J.R., VicenteVillardón, J.L., GalindoVillardón, M.P. and Zambrano, A.Y. (2008). Identifying molecular markers associated with classification of genotypes by External Logistic Biplots. Bioinformatics. 24(24):28322838
