Schematic image showing a chylomicron

Chylomicrons (from the Greek chylo, meaning juice or milky fluid, and micron, meaning small particle) are lipoprotein particles that consist of triglycerides (85–92%), phospholipids (6–12%), cholesterol (1–3%), and proteins (1–2%).[1] They transport dietary lipids from the intestines to other locations in the body. Chylomicrons are one of the five major groups of lipoproteins (chylomicrons, VLDL, IDL, LDL, HDL) that enable fats and cholesterol to move within the water-based solution of the bloodstream.


  • Function 1
  • Origin 2
  • Stages 3
    • Nascent chylomicrons 3.1
    • Mature chylomicron 3.2
    • Chylomicron remnant 3.3
  • References 4


Chylomicron structure
ApoA, ApoB, ApoC, ApoE (apolipoproteins); T (triacylglycerol); C (cholesterol); green (phospholipids)

Chylomicrons transport lipids absorbed from the intestine to adipose, cardiac, and skeletal muscle tissue, where their triglyceride components are hydrolyzed by the activity of lipoprotein lipase and the released free fatty acids are absorbed by the tissue. When a large portion of the triacylglycerol core have been hydrolyzed, chylomicron remnants are formed and are taken up by the liver, hereby transferring dietary fat also to the liver.


Chylomicrons are formed in the endoplasmic reticulum in the absorptive cells of small intestines. To be specific, the mucosal cells within the villi of the duodenum. Newly formed chylomicrons are secreted through the baso-lateral membrane into the lymphatic system. Chylomicrons are released from the lymph to the blood systems, and supply the tissue with fat absorbed from the diet.[2]


There are three stages in the chylomicron's "lifecycle":

  • Nascent chylomicron
  • Mature chylomicron
  • Chylomicron remnant

Nascent chylomicrons

Triglycerides are emulsified by bile and hydrolyzed by the enzyme lipase, resulting in a mixture of fatty acids and monoglycerides. These then pass from the intestinal lumen into the enterocyte, where they are re-esterified to form triacylglycerol. The triacylglycerol is then combined with phospholipids, cholesterol ester, and apolipoprotein B-48 to form a nascent chylomicrons. These are then released by exocytosis from enterocytes into lacteals, lymphatic vessels originating in the villi of the small intestine, and are then secreted into the bloodstream at the thoracic duct's connection with the left subclavian vein.

Nascent chylomicrons are composed primarily of triglycerides (85%) and contain some cholesterol and cholesteryl esters. The main apolipoprotein component is apolipoprotein B-48 (apo B-48).

Mature chylomicron

While circulating in blood, chylomicrons exchange components with high-density lipoproteins (HDL). The HDL donates apolipoprotein C-II (APOC2) and apolipoprotein E (APOE) to the nascent chylomicron and, thus, converts it to a mature chylomicron (often referred to simply as "chylomicron"). APOC2 is the cofactor for lipoprotein lipase (LPL) activity.

Chylomicron remnant

Once triglyceride stores are distributed, the chylomicron returns APOC2 to the HDL (but keeps APOE), and, thus, becomes a chylomicron remnant, now only 30–50 nm. APOB48 and APOE are important to identify the chylomicron remnant in the liver for endocytosis and breakdown.


  1. ^ M Mahmood Hussain: "Review Article: A proposed model for the assembly of chylomicrons"; Arterosclerosis; Vol. 148; 2000; pages 1–15;
  2. ^ Smith, Sareen S. Gropper, Jack L.; Smith, Jack S (2013). Advanced nutrition and human metabolism (6th ed.). Belmont, CA: Wadsworth/Cengage Learning.