Chylomicrons

Chylomicrons


Chylomicrons (from the Greek chylo, meaning juice or milky fluid, and micron, meaning small particle) are lipoprotein particles that consist of triglycerides (85-92%), phospholipids (6-12%), cholesterol (1-3%), and proteins (1-2%).[1] They transport dietary lipids from the intestines to other locations in the body. Chylomicrons are one of the five major groups of lipoproteins (chylomicrons, VLDL, IDL, LDL, HDL) that enable fats and cholesterol to move within the water-based solution of the bloodstream.

Function

Chylomicrons transport exogenous lipids to liver, adipose, cardiac, and skeletal muscle tissue, where their triglyceride components are unloaded by the activity of lipoprotein lipase. As a consequence, chylomicron remnants are left over and are taken up by the liver.

Origin

Chylomicrons are a type of structure that includes lipoprotein produced in absorptive cells of small intestines, to be specific the epithelial cells within the villi of the duodenum.

Stages

There are three stages in the chylomicron's "lifecycle":

  • Nascent chylomicron
  • Mature chylomicron
  • Chylomicron remnant

Nascent chylomicrons

Chylomicrons are created by the absorptive cells of the small intestine, known as enterocytes. They are relatively large, having a diameter of 75 to 1,200 nm. These nascent chylomicrons are released by exocytosis from enterocytes into lacteals, lymphatic vessels originating in the villi of the small intestine, and are then secreted into the bloodstream at the thoracic duct's connection with the left subclavian vein.

Nascent chylomicrons are composed primarily of triglycerides (85%) and contain some cholesterol and cholesteryl esters. The main apolipoprotein component is apolipoprotein B-48 (apo B-48).

Mature chylomicron

While circulating in blood, chylomicrons exchange components with high-density lipoproteins (HDL). The HDL donates apolipoprotein C-II (APOC2) and apolipoprotein E (APOE) to the nascent chylomicron and, thus, converts it to a mature chylomicron (often referred to simply as "chylomicron"). APOC2 is the cofactor for lipoprotein lipase (LPL) activity.

Chylomicron remnant

Once triglyceride stores are distributed, the chylomicron returns APOC2 to the HDL (but keeps APOE), and, thus, becomes a chylomicron remnant, now only 30–50 nm. APOB48 and APOE are important to identify the chylomicron remnant in the liver for endocytosis and breakdown.

References