Hypothetico-deductive model
The hypothetico-deductive model or method is a proposed description of scientific method. According to it, scientific inquiry proceeds by formulating a hypothesis in a form that could conceivably be falsified by a test on observable data. A test that could and does run contrary to predictions of the hypothesis is taken as a falsification of the hypothesis. A test that could but does not run contrary to the hypothesis corroborates the theory. It is then proposed to compare the explanatory value of competing hypotheses by testing how stringently they are corroborated by their predictions.
Contents
- Example 1
- Discussion 2
- See also 3
- Citations 4
- References 5
Example
One example of an algorithmic statement of the hypothetico-deductive method is as follows:^{[1]}
- 1. Use your experience: Consider the problem and try to make sense of it. Gather data and look for previous explanations. If this is a new problem to you, then move to step 2.
- 2. Form a conjecture (hypothesis): When nothing else is yet known, try to state an explanation, to someone else, or to your notebook.
- 3. Deduce predictions from the hypothesis: if you assume 2 is true, what consequences follow?
- 4. Test (or Experiment): Look for evidence (observations) that conflict with these predictions in order to disprove 2. It is a logical error to seek 3 directly as proof of 2. This formal fallacy is called affirming the consequent.^{[2]}
One possible sequence in this model would be 1, 2, 3, 4. If the outcome of 4 holds, and 3 is not yet disproven, you may continue with 3, 4, 1, and so forth; but if the outcome of 4 shows 3 to be false, you will have to go back to 2 and try to invent a new 2, deduce a new 3, look for 4, and so forth.
Note that this method can never absolutely verify (prove the truth of) 2. It can only falsify 2.^{[3]} (This is what Einstein meant when he said, "No amount of experimentation can ever prove me right; a single experiment can prove me wrong."^{[4]})
Discussion
Additionally, as pointed out by Carl Hempel (1905–1997), this simple view of the scientific method is incomplete; a conjecture can also incorporate probabilities, e.g., the drug is effective about 70% of the time.^{[5]} Tests, in this case, must be repeated to substantiate the conjecture (in particular, the probabilities). In this and other cases, we can quantify a probability for our confidence in the conjecture itself and then apply a Bayesian analysis, with each experimental result shifting the probability either up or down. Bayes' theorem shows that the probability will never reach exactly 0 or 100% (no absolute certainty in either direction), but it can still get very close to either extreme. See also confirmation holism.
Qualification of corroborating evidence is sometimes raised as philosophically problematic. The raven paradox is a famous example. The hypothesis that 'all ravens are black' would appear to be corroborated by observations of only black ravens. However, 'all ravens are black' is logically equivalent to 'all non-black things are non-ravens' (this is the contraposition form of the original implication). 'This is a green tree' is an observation of a non-black thing that is a non-raven and therefore corroborates 'all non-black things are non-ravens'. It appears to follow that the observation 'this is a green tree' is corroborating evidence for the hypothesis 'all ravens are black'. Attempted resolutions may distinguish:
- non-falsifying observations as to strong, moderate, or weak corroborations
- investigations that do or do not provide a potentially falsifying test of the hypothesis.^{[6]}
Evidence contrary to a hypothesis is itself philosophically problematic. Such evidence is called a falsification of the hypothesis. However, under the theory of confirmation holism it is always possible to save a given hypothesis from falsification. This is so because any falsifying observation is embedded in a theoretical background, which can be modified in order to save the hypothesis. Popper acknowledged this but maintained that a critical approach respecting methodological rules that avoided such immunizing stratagems is conducive to the progress of science.^{[7]}
Despite the philosophical questions raised, the hypothetico-deductive model remains perhaps the best understood theory of scientific method.
See also
- Confirmation bias
- Deductive-nomological
- Explanandum and explanans
- Inquiry
- Models of scientific inquiry
- Philosophy of science
- Scientific method
- Verifiability theory of meaning
- Pragmatism
- Will to Believe Doctrine
- Types of inference
Citations
- ^ Peter Godfrey-Smith (2003) Theory and Reality, p. 236.
- ^ Taleb 2007 e.g., p. 58, devotes his chapter 5 to the error of confirmation.
- ^ "I believe that we do not know anything for certain, but everything probably." —Christiaan Huygens, Letter to Pierre Perrault, 'Sur la préface de M. Perrault de son traité del'Origine des fontaines' [1763], Oeuvres Complétes de Christiaan Huygens (1897), Vol. 7, 298. Quoted in Jacques Roger, The Life Sciences in Eighteenth-Century French Thought, ed. Keith R. Benson and trans. Robert Ellrich (1997), 163. Quotation selected by Bynum & Porter 2005, p. 317 Huygens 317#4.
- ^ As noted by Alice Calaprice (ed. 2005) The New Quotable Einstein Princeton University Press and Hebrew University of Jerusalem, ISBN 0-691-12074-9 p. 291. Calaprice denotes this not as an exact quotation, but as a paraphrase of a translation of A. Einstein's "Induction and Deduction". Collected Papers of Albert Einstein 7 Document 28. Volume 7 is The Berlin Years: Writings, 1918-1921. A. Einstein; M. Janssen, R. Schulmann, et al., eds.
- ^ Murzi, Mauro (2001, 2008), "Carl Gustav Hempel (1905—1997)", Internet Encyclopedia of Philosophy. Murzi used the term relative frequency rather than probability.
- ^ John N.W. Watkins (1984), Science and Skepticism, p. 319.
- ^ Karl R. Popper (1979, Rev. ed.), Objective Knowledge, pp. 30, 360.
References
- . (Luis De La Peña and Peter E. Hodgson, eds.)
- .